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Memory deficits and other cognitive symptoms frequently associated with mTBI are
commonly thought to resolve within 7–10 days. This generalization is based principally
on observations made in individuals who are in the unstressed environmental conditions
typical to a clinic and so does not consider the impact of physiologic, environmental, or
psychological stress. Normobaric hypoxic stress can be generated with normal mean sea
level (MSL) air, which is about 21% oxygen (O2) and 78% nitrogen (N), by reducing the
percentage of O2 and increasing the percentage of N so that the resultant mixed-gas has a
partial pressure of O2 approximating that of specified altitudes.This technique was used to
generate normobaric hypoxic equivalents of 8,000, 12,000, and 14,000 feet above MSL in
a group of 36 volunteers with a mTBI history and an equal number of controls matched on
the basis of age, gender, tobacco smoking consumption, weight, height, and body mass
index. Short-term visual memory was tested using the Matching to Sample (M2S) subtest
of the BrainCheckers analog of the Automated Neuropsychological Assessment Metrics.
Although there were no significant differences in M2S performance between the two
groups of subjects at MSL, with increased altitude, the mTBI group performance was sig-
nificantly worse than that of the control group. When the subjects were returned to MSL,
the difference disappeared. This finding suggests that the “hypoxic challenge” paradigm
developed here has potential clinical utility for assessing the effects of mTBI in individuals
who appear asymptomatic under normal conditions.

Keywords: mild traumatic brain injury, normobaric hypoxia, cognitive stress test, concussion, BrainCheckers,
automated neuropsychological assessment metrics, mTBI biomarkers, hypoxic challenge

INTRODUCTION
Memory

Q1

deficits

Q2

and other cognitive problems are associated with
mTBI, which is often alternatively referred to as concussion (Ran-
dolph et al., 2009). The literature on the recovery from concussion
suggests that the duration of symptoms usually is from 7 to 10 days
(McCrory et al., 2005). Almost invariably these conclusions are
based on observations made in individuals under unstressed envi-
ronmental conditions and so do not address the impact of stresses
encountered in the operational environment. Consequently, there
is limited information regarding how individuals with a history
of mTBI function when stressed. This raises the possibility that
individuals with an mTBI history may seem completely asymp-
tomatic during standard clinical examination but may become
symptomatic when exposed to such stress as sleep deprivation,
pharmaceuticals, extreme temperature, anxiety, hypoxia, or other
stressors that affect brain function.

The hypothesis that physiologic or psychological stress might
uncover latent or subclinical mTBI symptoms was suggested by
an incidental observation made in a flight simulator during a
study of instrument flight by highly skilled, military instructor
pilots who were exposed to a normobaric hypoxic condition that

approximated conditions encountered at 18,000 feet above mean
sea level (MSL) (Temme et al., 2010). Under the control condition
of breathing MSL air, which contains about 21% oxygen (O2) and
78% nitrogen (N), the flight performance of all pilots was essen-
tially indistinguishable and consistent with their extraordinary
expertise; however, when the pilots were breathing a normobaric
simulation of air 18,000 feet above MSL, which contained about
9.98% O2 and 89% N, one pilot not only lost control of the air-
craft but did not realize that fact. Subsequent review of the pilot’s
medical record with the medical monitor who cleared the pilot for
the study showed that some years earlier the pilot had experienced
a significant concussion while ejecting from a high-performance
aircraft.

Support for this hypothesis was found in Gronwall and Wright-
son’s (1980) Q3study of a group of 10 university students who had
experienced “minor head injury” 1–3 years prior to the study
(Ewing et al., 1980). At the time of the study, these students were
asymptomatic and performing comparably to pre-injury levels.
These students, along with a control group of 10 age-, gender-,
and academic performance-matched students, were exposed for
30 min to an altitude stress of 3800 m (about 12,500 feet) above

www.frontiersin.org April 2013 | Volume 4 | Article 41 | 1

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Neurotrauma/10.3389/fneur.2013.00041/abstract
http://www.frontiersin.org/Neurotrauma/10.3389/fneur.2013.00041/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LeonardTemme&UID=77249
mailto:leonard.temme@us.army.mil
http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive


115 172

116 173

117 174

118 175

119 176

120 177

121 178

122 179

123 180

124 181

125 182

126 183

127 184

128 185

129 186

130 187

131 188

132 189

133 190

134 191

135 192

136 193

137 194

138 195

139 196

140 197

141 198

142 199

143 200

144 201

145 202

146 203

147 204

148 205

149 206

150 207

151 208

152 209

153 210

154 211

155 212

156 213

157 214

158 215

159 216

160 217

161 218

162 219

163 220

164 221

165 222

166 223

167 224

168 225

169 226

170 227

171 228

Temme et al. Latent deficits of mTBI

MSL in a low-pressure chamber. None of the students in the
experimental group was symptomatic at MSL; however, at altitude,
there were clear deficits in short-term memory and judgment as
reflected by a more lax response bias in a signal detection task.
This detection task permitted the differentiation of response bias
from sensitivity, which was not affected by the altitude stress.
Some effects were apparent within 10 min of altitude exposure.
These effects were reversible, disappearing when the students were
returned to MSL (Ewing et al., 1980).

The purpose of the present study was to see whether normo-
baric hypoxic stress had a differential effect on the neurocognitive
performance of mTBI and control subjects.

MATERIALS AND METHODS
The study was performed at Clinvest Research, Springfield, MO,
USA, following review and approval by the Chesapeake Institu-
tional Review Board, the U.S. Army Aeromedical Research Labora-
tory Human Use Committee, and the U.S. Army Medical Research
and Materiel Command Human Subjects Research Review Board.
The study was conducted in accordance with all Federal laws,
regulations, and standards of practice as well as those of the
Department of Defense and U.S. Army. The study was deter-
mined to pose a greater than minimal risk to the subjects and
included several risk mitigation techniques. One such technique
was to present the normobaric hypoxic stress conditions in an
ascending sequence of severity so that each subject was observed
at a lower stress condition before being exposed to a greater
stress.

SUBJECTS
Subject recruitment flyers were posted throughout the local com-
munity where people with a history of mTBI would likely see
them. These locations included medical as well as sports facili-
ties such as athletic and health clubs and gymnasiums. The flyers
briefly described the study and included a contact phone number.
During initial phone screening, the study and the criteria for par-
ticipation were further described, an appointment was scheduled,
and the amount of financial compensation for study participa-
tion stated. Prospective subjects were told to abstain from any
alcohol consumption for at least 12 h prior to testing. A copy of
the Informed Consent Document was mailed or e-mailed to the
prospective subject to review before arriving at the research center
for the study.

Subjects consisted of two groups of 36 subjects each, one group
with a history of mTBI and one without. Subjects were between the
ages of 18 and 50 years. Specific exclusion criteria were pregnancy;
history of drug or alcohol abuse; depression; bipolar disorder;
schizophrenia; heart, kidney, or liver disorders; asthma; strokes
or mini-strokes; poor leg circulation; current or past neurological
problems such as seizures, epilepsy, dementia, or post-traumatic
headache; current concentration and/or memory problems sec-
ondary to the mTBI; loss of consciousness longer than 10 min
at the time of injury; and post-traumatic amnesia greater than
24 h. While medical records and other source documentation were
requested, these were not available in most cases and much of
the information was by subject self-report, a method with known
weaknesses (Rapp and Curley, 2012).

The median interval between the trauma of an mTBI
subject and that subject’s testing was 1.9 years (mean= 3.1;
SD= 2.7 years), with the first and the third quartile 1.3 and
4.7 years respectively. The smallest interval was 0.6 years and the
largest interval was 9.7 years. Of the 36 mTBI subjects, 15 reported
a loss of consciousness averaging about 4 min in duration and
ranging between a few seconds to a few minutes. Five subjects
reported some form of post-traumatic amnesia with a duration
ranging from about 5 min to a couple of hours. Sports accidents
accounted for 11 traumas, motor vehicle accidents accounted for
10 traumas, falls accounted for 5 traumas, head strike accounted
for 3 traumas, blast of an improvised explosive device experi-
enced in Iraq accounted for 1 trauma, and 6 traumas were not
described in the records. The one subject with the history of blast
mTBI, was receiving treatment for post-traumatic stress disorder
(PTSD); no other subjects reported PTSD and no subject reported
multiple TBIs.

The mTBI and control subjects were explicitly matched on the
basis of age,gender, tobacco smoking consumption,weight,height,
and body mass index, resulting in two groups, each with 9 women
and 27 men. No subjects and no data were excluded, so complete
datasets were obtained and analyzed from a total of 36 volunteers
in each of the two groups. Effectiveness of matching is shown in
Table 1, which presents group comparisons across seven parame-
ters. Multivariate analysis failed to show any statistically significant
differences between the groups on any of the parameters presented
in Table 1. Further, pairwise probabilities corrected for multiple
comparisons with the Bonferroni method ranged between 0.180
and 0.817.

In order to minimize the impact of possible subtle methodolog-
ical shifts over time due to extraneous factors such as changes in
staff, experimenter expertise or bias, procedures, criteria, or instru-
mentation drift, each mTBI subject was tested as close in time
as possible to the matched control subject. The median interval
between testing of the mTBI subject and the matched control sub-
ject was 4 days, with the interval between the first quartile and the
third quartile ranging from 1 to 8 days, and the maximal interval
being 25 days.

INSTRUMENTATION
Reduced oxygen breathing device-2
The reduced oxygen breathing device (ROBD)-2 is a commer-
cially available, off-the-shelf device that simulates altitude by
using normobaric hypoxia. The normobaric hypoxia is gener-
ated from MSL air, which is normally about 21% oxygen (O2)
and 78% nitrogen (N), by reducing the percentage of O2 and
increasing the percentage of N so that the resultant mixed-gas
has a partial pressure of O2 approximating that of specified alti-
tudes (Still and Temme, 2012). This method permits the gen-
eration of altitude-related hypoxic states without using a low-
pressure chamber; and therefore without exposing an individ-
ual to changes in barometric pressure and its associated risk of
decompression sickness. The target altitudes used in the present
study were 8,000, 12,000, and 14,000 feet above MSL, with %
O2 of about 15.5%, 13.0, and 12.0%, respectively, in addition to
the 21.0% O2 typical of MSL. The complete technical descrip-
tion, including blueprints and engineering specifications of the
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Table 1 | Comparison of physical parameters between groups.

Age (years) Pulse (bpm) Blood pressure (mmHg) Weight (kg) Height (m) Body mass index

Systolic Diastolic

mTBI Mean 25.3 70.8 120.1 73.9 90.8 1.8 28.3

SD 5.4 11.6 14.8 9.8 29.4 0.1 7.9

Control Mean 24.9 72.7 120.9 73.4 95.7 1.8 29.7

SD 4.9 14.2 14.6 7.8 38.8 0.1 11.5

ROBD-2 is available from the manufacturer’s website (Environics,
2012).

Neuropsychological evaluation
Cognitive performance was assessed with selected neuropsycho-
logical subtests of BrainCheckers, the Automated neuropsycho-
logical assessment metrics (ANAM) readiness evaluation system
(ARES), which is a Palm OS analog of ANAM (Elsmore et al.,
2007; Reeves et al., 2007). These subtests were administered on a
Palm Tungsten 2E handheld Personal Digital Assistant (PDA). The
present study used eight tests from the BrainCheckers test battery:
(1) Sleep Scale, (2) Simple Reaction Time, (3) Procedural Reaction
Time, (4) Running Memory, (5) Matching to Sample (M2S), (6)
Congruent Stroop, (7) Incongruent Stroop, and (8) Pursuit Track-
ing. For all subjects at each altitude the BrainCheckers tests were
administered consistently in the sequence listed above.

(1) Sleep Scale: This test is a simple self-rating of the subject’s
current feeling of alertness rated on a seven-step scale. The
subject is instructed to read all seven statements and choose
the one that applies most accurately at the moment. The Sleep
Scale reports the numerical rating that reflects alertness.

(2) Simple Reaction Time: An asterisk-like symbol appears on
the computer screen at varying (650–1350 ms) time intervals.
The subject taps the asterisk with a stylus as quickly as possible
upon seeing the stimulus. There are 4 practice trials followed
by 20 test trials. The Simple Reaction Time reports through-
put, which is the number of correct responses per minute.

(3) Procedural Reaction Time: This is a measure of choice reac-
tion time that requires the subject to differentiate between
two sets of characters. The test presents a numeric stimulus
on the screen, which is a 2, 3, 4, or 5. The subject’s response
is a tap on one of two buttons; one button to indicate that
the stimulus was a 2 or 3 while the other button indicates
that the stimulus was a 4 or a 5. The test is preceded by 4
“warm-up/practice” sessions; 32 stimuli are presented during
the test. The Procedural Reaction Time reports throughput,
the number of correct responses per minute.

(4) Running Memory Continuous Performance test: This task
requires the subject to indicate whether the current number is
the number that had just been displayed. The “SAME” button
is to be pressed if they are the same and the “DIFF” button is
to be pressed if the number is different. The numbers match
on 50% of the trials and a number will never be presented on
more than three consecutive trials. No response is required
to the first stimulus since there is no “preceding” stimulus

with which to compare it. Ten warm-up/practice trials are
followed by 40 stimuli that comprise the test. To ensure the
subject understands this test, the subject must correctly answer
50% of the warm-up/practice trials before the test begins.
The Running Memory Continuous Performance test reports
throughput, the number of correct responses per minute.

(5) Matching to Sample: This is a test of short-term memory,
attention, and visual-spatial discrimination. The subject is
presented with a single design for 3 s to study and remem-
ber. The design then disappears and the screen goes blank.
Following a delay of 5 s, two designs simultaneously appear
on the screen. The subject indicates which of the two designs
matches the original. This subtest is preceded by two practice
stimuli that demonstrate to the subject the audio feedback that
is associated with an incorrect response (beep if wrong). The
M2S test reports throughput, the number of correct responses
per minute.

(6) Congruent Stroop: During this test the words Red, Green, and
Blue are presented on the screen in the same color as the word;
for example, a red font is used for the word “Red.” At the bot-
tom of the screen are three boxes, one box is labeled R, one
G, and one B. The subject taps the box to identify the color of
the word. Three warm-up/practice stimuli are followed by 30
stimuli that comprise the actual test. The Stroop test reports
throughput, which is the number of correct responses per
minute.

(7) Incongruent Stroop: During this subset, the words Red, Green,
and Blue are flashed on the screen but in a color different from
the word. For example, the word Blue would be presented
on the screen using red letters or green letters. The subject
taps the response box to indicate the color of the letters of the
word. These instructions are identical with the instructions
used for the Congruent Stroop but the Incongruent Stroop is
harder because the words are in incongruent colors. This test
presents 3 warm-up/practice stimuli, followed by 30 stimuli
that comprise the actual test. As in the Congruent Stroop
above, the Incongruent Stroop reports throughput, which is
the number of correct responses per minute.

(8) Pursuit Tracking: This test is a Pursuit Tracking and fine psy-
chomotor abilities assessment. It is designed to detect impair-
ment in fine motor abilities that are evident in Parkinson’s
disease and other similar conditions which include intentional
tremor, familial tremor, side effects from medication,and cere-
bellar dysfunction. The test requires pressing the stylus on the
screen within a target/bulls-eye and keeping the stylus on the
center of the bulls-eye as it moves across the screen in a sine
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wave pattern for 60 s. The Pursuit Tracking test reports the
percent of the time during which the response stylus is on the
target.

PROCEDURES
After the Informed Consent Document was reviewed and signed,
a study intake form, which documented past and current medical
history, was completed. Female subjects provided a urine sample
for pregnancy testing. A physician reviewed the medical history
forms and examined the subject to ensure compliance with inclu-
sion/exclusion criteria. The subject was then introduced to the
testing facility, including the test apparatus. The technician also
fitted the ROBD-2 breathing mask on the subject’s face so that the
subject could gain experience using it. When the subject was com-
fortable breathing MSL air through the ROBD-2 and the mask, the
subject was introduced to the BrainCheckers tests. After the sub-
ject reported being comfortable with all the testing procedures,
s/he was encouraged to take a break before formal testing began.

All subjects went through the same sequence of five simulated
altitudes: (1) mean sea level 1 (MSL1), (2) 8,000 feet (2,438 m)
above MSL (8k), (3) 12,000 feet (3,657 m) above MSL (12k), (4)
14,000 feet (4,267 m) above MSL (14k), and (5) a second MSL
condition (MSL2). As previously noted, the sequence of increas-
ing stress exposures was used as a risk mitigation strategy; however,
such a sequence confounds order effects such as training, experi-
ence, boredom, fatigue, anxiety, apprehension, and so forth, with
the sequence of increasing normobaric stress. This confounding
made it impossible to evaluate the effects of one altitude, for
example 12k condition, independently of the previous altitude
exposures as well as independently of order effects. Thus, the study
was not intended to provide an evaluation of the effects of each
stress condition on subject cognition. That question presupposes
assurance that the methodology could be used safely in such a
study. Rather, the present study was intended to assess the feasibil-
ity of exposing mTBI subjects to the normobaric hypoxic stress,
thereby laying the foundations for future studies.

The MSL1 condition provided the baseline values. The 8, 12,
and 14k exposures comprised the hypoxic condition. The MSL2
condition was intended to ensure that whatever effects the hypoxic
exposures had were reversible and temporary; MSL2 also served
as a safety precaution by providing the opportunity to observe
the subject under controlled conditions post-experiment before
release.

At each altitude, the subject acclimated for 3 min before begin-
ning the BrainCheckers testing. When testing was completed at
each altitude, the subject was returned to MSL and given the option
of taking a brief break. If the subject opted for the break, the mask
was removed. When the subject was ready to continue, the subject
donned the mask, which was checked to ensure a good seal. If the
subject opted not to take a break, the subject rested while breathing
MSL air through the mask for at least 1 min before proceeding to
the next altitude.

EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS
The goal of the present study was to compare the cognitive per-
formance of the mTBI subjects with that of the control subjects
when both groups were exposed to the same normobaric hypoxic

stress. That all subjects were exposed to the same sequence of nor-
mobaric hypoxia conditions helped ensure that all subjects were
exposed equally to the independent variable of interest. The major
concern was to ensure that the two groups of subjects were exposed
equally to the same hypoxic stress. The question is whether the self-
paced nature of the experimental procedures, particularly those
that permitted a subject to take a break if desired, compromised
this equivalence.

A mixed-model analysis of variance (ANOVA) assessed whether
there was any evidence for statistically significant differences
between the mTBI and control subjects in the time required for
completing the BrainCheckers testing. The means and SDs of the
duration of testing in minutes at each altitude for the two groups
of subjects are presented in Table 2.

There was no evidence for a difference between groups [SS
Group= 2.336, SS Error= 141.994, F(1, 70)= 1.152, p < 0.287],
nor for a group by altitude interaction [SS Interaction= 0.928, SS
Error= 97.7, df= 3.005, 210.369 (Greenhouse–Geisser corrected)
F = 0.665, p < 0.617]. It may also be noted that there was no
evidence of any differences among the altitudes.

Although subjects were given the option to take a break after
testing at each altitude, the subjects, of their own accord, kept the
vast majority of these breaks brief. The means (SD) of the breaks
before each of the altitude testing conditions for the two groups
are presented in Table 3.

A mixed-model ANOVA showed that there was no evidence
for statistically significant differences between the mTBI and
control subjects for the intervals in Table 3 [SS Group= 4.253,
SS Error= 623.743, df= 1.70, F = 0.477, p < 0.492], nor for
a group by altitude interaction [SS Interaction= 10.372, SS
Error= 798.174, df= 2.250, 157.520 (Greenhouse–Geisser cor-
rected) F = 0.910, p < 0.415]. It may be noted, however, that the
duration of the average break preceding 8k condition (2.306 min)
was significantly shorter than the breaks preceding 12, 14k, and
MSL2 conditions, none of which were different among themselves.

The interval between starting the exposure to the altitude con-
dition and starting BrainCheckers testing was monitored. The
means (SD) of these intervals for the two groups at each altitude
are presented in Table 4.

A mixed-model ANOVA showed that there was no evidence
for statistically significant differences between the mTBI and con-
trol subjects for the intervals in Table 4 (SS Group= 0.003, SS
Error= 67.493, df= 1.70, F = 0.004, p < 0.952) nor for a group
by altitude interaction [SS Interaction= 1.288, SS Error= 81.701,
df= 2.698, 188.885 (Greenhouse–Geisser corrected) F = 1.104,
p < 0.349].

The above comparisons and analyses of the hypoxic exposure
temporal parameters support the conclusion that the temporal
parameters of the hypoxic exposure were not statistically different
between the two groups.

All data manipulations were performed with Excel 2007 and
statistical calculations were performed with SPSS Version 19.

RESULTS
MEAN SEA LEVEL 1 BASELINE
Mean sea level 1 performance provides the baseline for calculat-
ing the difference scores used to analyze the effects of normobaric
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Table 2 | Mean (SD) duration in minutes of the BrainCheckers testing for each altitude.

Subject group Altitude condition

MSL1 8k 12k 14k MSL2

mTBI 11.28 (1.085) 11.17 (0.737) 11.31 (0.786) 11.11 (0.747) 11.11 (0.820)

Control 11.00 (1.014) 10.97 (0.609) 11.11 (0.887) 10.94 (0.754) 11.14 (0.723)

Table 3 | Mean (SD) duration in minutes between experimental

conditions.

Subject group Altitude condition

MSL1–8k 8–12k 12–14k 14k–MSL2

mTBI 2.33 (1.00) 3.36 (1.90) 4.78 (3.80) 3.36 (1.90)

Control 2.28 (1.19) 3.44 (1.65) 3.89 (2.80) 3.44 (1.65)

Table 4 | Mean (SD) duration in minutes between starting the

exposure to the altitude condition and starting BrainCheckers testing.

Subject group Altitude condition

8k 12k 14k MSL2

mTBI 3.92 (0.6) 4.03 (0.6) 4.14 (0.9) 4.17 (0.9)

Control 4.11 (0.7) 3.97 (0.7) 4.19 (0.9) 4.00 (0.5)

hypoxia on the eight BrainCheckers tests. Specifically, for each test
at each altitude condition, the measurement recorded for a specific
subject was subtracted from that subject’s performance at MSL1.
This technique presupposes that there are no statistically signifi-
cant differences between the two groups of subjects for any of the
tests at MSL1. This precondition was evaluated using a multivari-
ate ANOVA to compare MSL1 performance between the mTBI and
control subject for each of the 8 tests. The results of these calcula-
tions are presented in Table 5, which includes the means and SDs
for each of the eight BrainCheckers tests for the two subject groups
as well as the group and error sum of squares, and the F statistics
with their associated probabilities. The calculations summarized
in Table 5 demonstrated that at MSL1 there is no evidence of any
difference in the performance between the two groups of subjects
on any of the tests.

DIFFERENCE SCORES
Predicated on the results of the comparisons summarized in
Table 5, difference scores were calculated, as described above, for
each of the BrainChecker tests for the 8, 12, and 14k altitude condi-
tions. Since the three different altitude conditions are confounded
with order effects they were combined into a single experimental
treatment. Table 6 shows the means over the three altitude condi-
tions for each of the BrainChecker tests for each group of subjects.
Table 6 also includes the Standard Error of the Means (SEM) and
the results of the between-group ANOVA.

Of the BrainCheckers tests, M2S was the only test in which the
performance of the two subject groups under hypoxic stress was

statistically different [SS Group= 766.894, SS Error= 9180.546,
F(1, 70)= 5.847, p < 0.018]. Specifically, mean throughput
difference for the mTBI group was 6.3331 whereas the mean
throughput difference for the controls was 2.565. It should be
noted that the way the throughput difference is calculated, the
greater the number, the bigger the performance degradation
associated with altitude.

The difference between the mTBI (mean= 4.64, SD= 9.424)
and the control subjects (3.17, SD= 8.997) M2S MSL2 throughput
difference scores was not statistically different [SS Group= 39.014,
SS Error= 5941.306, F(1, 70)= 0.460, p > 0.50], indicating that
whatever effects the hypoxic exposure had, the effects were not
evident during the MSL2.

For the sake of completion, Table 6 includes the means, the
SEM, as well as the ANOVA results for the BrainCheckers tests
that were not significant.

DISCUSSION
The present data show that under low stress conditions, the perfor-
mance on the M2S test, a measure of short-term visual memory,
of persons with mTBI was comparable to that of healthy controls;
but when stressed, persons with mTBI showed a disproportion-
ately severe impairment on this test. Thus, persons with mTBI may
appear normal when examined under conditions of low stress,
such as are typical during routine clinical examinations, but may
exhibit worrisome memory dysfunction when exposed to rela-
tively mild and common stressors. This may be an operationally
important finding relevant to operators who obtain information
by rapidly scanning a visual display and interpreting differences in
the display pattern over time, as is the case with flight instrument
displays. This idea may help explain the effect of hypoxia on the
one pilot’s flight performance described above.

Our findings suggest that the stressor used in the present
study, hypoxia, has the potential of being the basis for a practi-
cal “brain stress test” analogous to the standard cardiac stress test.
Such a capability would be particularly important since mTBI,
even when apparently completely recovered using conventional
examination strategies, may include deficits observable only under
stress.

Seven of the BrainCheckers tests showed no difference in the
effects of the hypoxic stress on the two groups of subjects, sug-
gesting that the effect of the stress on cognitive function was
relatively specific and not a generalized decrement in cognitive
function. The hypoxia literature, while inconsistent in terms of
identifying specific cognitive functions most vulnerable to brief
hypoxic exposure, raises the question of why a greater number
of the BrainCheckers subtests failed to show an effect (Petrassi
et al., 2012). This may be explained by the very mild nature of
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Table 5 | MSL1 means and SDs of the eight BrainCheckers test scores for the mTBI and the control subjects along with the results of the ANOVA.

Measure Group Mean SD Sum of square F (1, 70) Probability

Group Error

Sleep scale

Rating mTBI 1.39 0.688 0.681 22.194 2.146 0.147

Control 1.19 0.401

Simple reaction time

Throughput mTBI 197.39 27.93 6.722 56006 0.008 0.927

Control 196.78 28.63

Procedural reaction time

Throughput mTBI 105.47 13.67 213.556 9155 1.633 0.206

Control 108.92 8.65

Running memory continuous performance

Throughput mTBI 88.25 23.84 0.889 38587 0.002 0.968

Control 88.03 23.11

Matching to sample

Throughput mTBI 37.14 12.29 1.389 9645 0.01 0.92

Control 37.42 11.16

Congruent stroop

Throughput mTBI 88.08 16.1 8.681 13805 0.044 0.834

Control 87.39 11.64

Incongruent stroop

Throughput mTBI 73.58 15.95 91.125 21532 0.296 0.588

Control 71.33 18.99

Pursuit tracking

% Time on target mTBI 88.25 8.34 5.556 6132 0.063 0.802

Control 87.69 10.28

Table 6 | Difference scores for each of the BrainChecker tests for the two groups of subjects and the results of the between-group ANOVA.

Test Group Mean SEM Sum of squares F (1, 70) p

Group Error

Sleep rating mTBI −0.481 0.103 0.116 79.88 0.101 <0.751

Control −0.528

Reaction time mTBI −3.37 3.724 0.167 104817 0 <0.992

Control −3.315

Procedural reaction time mTBI 4.167 1.268 10.277 12148 0.059 <0.809

Control 3.731

Running memory mTBI −8.222 2.627 148.338 52164 0.199 <0.657

Control −9.88

Matching to sample mTBI 6.333 1.102 766.894 9180.546 5.847 <0.018

Control 2.565

Congruent stroop mTBI −3.463 1.468 130.667 16297 0.561 <0.456

Control −5.019

Incongruent stroop mTBI −3.213 1.539 4.741 17907 0.019 <0.892

Control −2.917

Pursuit tracking mTBI 1.981 0.998 5.352 7524.63 0.05 <0.824

Control 1.667

the concussed group’s symptoms. Recall that at MSL1 and MSL2
both groups showed virtually identical cognitive performance,
suggesting that cognitive abnormalities in the concussed group,

if present, would be very mild and subtle. It is possible that M2S is
more sensitive to hypoxia-induced cognitive impairment, or even
to the subtle, lingering remnants of distant mild concussions. This
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also raises the possibility that different cognitive functions may
be differentially vulnerable to different physiological stressors, for
example, alcohol or drug effects may impede cognition in ways
that are different than normobaric hypoxia or sleep deprivation.

While this study is consistent with the study by Ewing et al.
(1980), it suffers from several additional limitations. One is the
use of subjects’ self-report of their medical and concussion histo-
ries. Another is the wide range in the interval between the subjects’
time of injury and their time of study participation. Moreover, the
study examined cognitive performance only on a brief battery of
computerized cognitive tasks, but did not include comprehensive
neuropsychological assessment. These weaknesses emphasize the
importance of replication and further study.

A possible explanation for the latent deficits exposed by hypoxic
stress is that mTBI patients have to “work harder” in order to per-
form normally, so they are closer to their maximum capabilities
and more vulnerable to resource depletion when stressed. Recent
studies showing fMRI and EEG abnormalities in patients with nor-
mal neuropsychological testing support this possibility (Gosselin
et al., 2006; Broglio et al., 2009; Pontifex et al., 2009; Slobounov
et al., 2010).

Given the heterogeneity of stressors to which Warriors routinely
are exposed, the effects of concussion upon resilience to such stres-
sors urgently require further study. The stress in the current study,
hypoxia, may be a unique stressor for unmasking latent memory
impairment following concussion, or, as further research may
show, other stressors also may have disproportionately negative
effects upon diverse cognitive functions.

The “hypoxic challenge” paradigm should be further explored
for its potential clinical utility. In particular, future studies should

include assessment of subjects’ ability to discern whether they are
at MSL or under hypoxic challenge. If subjects cannot discern
between the two conditions, but the present findings are repli-
cated, the hypoxic challenge paradigm may be less vulnerable to
effects of dissimulation for secondary gain or diminished effort
secondary to depression and other conditions that frequently are
co-morbid with mTBI. If this is the case, hypoxic challenge would
prove an extremely valuable assessment tool for mTBI patients
with latent deficits that current neuropsychological assessments
do not detect.

In support of this potential utility it should be noted that none
of the subjects reported any difficulties with the hypoxic stress used
in the present study. Furthermore, the subjects set their own pace
for completing the experiment including the duration between the
three successively severe normobaric hypoxic stress conditions.
There was no evidence that the mTBI subjects needed longer
breaks between exposures than did the controls, supporting the
notion that both subject groups sustained the stress equally well.
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